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Abstraet--A theoretical prediction of the lubrication force resisting the close approach of two spherical 
drops of arbitrary radii and viscosities separated by a thin viscous fluid layer is presented. The 
hydrodynamic resistance is predicted to be weaker than that for two colliding rigid spheres in near contact 
due to the mobility of the drop interfaces. Solutions are also presented for the limiting cases of (a) a drop 
or bubble approaching a rigid sphere or flat plate, (b) a drop approaching a bubble or a flat free surface 
and (c) a rigid sphere approaching a flat free surface. When one of the interfaces is completely mobile, 
as for a bubble or a free surface, the ratio of the lubrication force to that for two rigid spheres with the 
same relative velocity and reduced radius is predicted to be less than one-fourth; when one interface is 
completely rigid or immobile, this ratio is predicted to be greater than one-fourth. The results are shown 
to be in good agreement with previous solutions based on the method of bispherical coordinates when 
the gap is much smaller than the radius of the smallest drop. 

Key Words: drops, bubbles, lubrication, near-contact, hydrodynamic resistance, boundary integral 
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i .  I N T R O D U C T I O N  

The dynamic interaction of viscous drops with other drops, bubbles or rigid spheres dispersed in 
an immiscible fluid is of fundamental importance to a variety of multiphase processes such as 
flotation, extraction, raindrop formation and enhanced oil recovery. In addition, the motion of a 
viscous drop toward or away from a solid boundary is important in the processing of immiscible 
materials involving a moving solidification front. Whether or not the drops or bubbles make 
contact and/or coalesce is substantially determined by the hydrodynamic resistance to near-contact, 
relative motion and by any attractive and repulsive forces which may be present. Several theoretical 
approaches have been taken previously to predict the hydrodynamic force on two spherical drops 
in relative motion, including bispherical coordinates (Haber et  al. 1973; Wacholder & Weihs 1972; 
Rushton & Davies 1973, 1978), the method of reflections (Hetsroni & Haber 1978) and imaging 
techniques (Fuentes et al. 1988). Each of these solution methods yields an infinite series for the 
force between the drops that diverges when the distance between the drops becomes much smaller 
than their size. 

In order to elucidate the nature of the hydrodynamic forces resisting the. relative motion of 
dispersed drops close to one another, Davis et al. (1989) used lubrication theory to describe the 
flow in the narrow gap between two approaching drops and boundary integral theory to describe 
the tangential motion of the drop interfaces that arises due to the shear stress exerted by the fluid 
being squeezed out from between the drops. In their development, it is assumed that the two drops 
are of the same viscosity and that they have sufficiently high surface tension to remain spherical. 
The dimensionless lubrication force was shown to depend on a single parameter, m -- 2 - '  ax//-~0, 
where 2 is the ratio of the drop viscosity to that of the continuous phase, a is the reduced radius 
of the two drops and h 0 is the distance between the surfaces of the two drops at the axis of 
symmetry. This parameter describes the mobility of the interfaces; when m ,~ 1, the drops behave 
as rigid spheres, whereas when m >> 1, the drop interfaces are fully mobile. 
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The present paper directly builds on that of Davis et al. (1989) by considering spherical drops 
that, in general, have different viscosities; the extension to deformable drops will be examined later. 
Of special interest are the important limiting cases of a drop moving through a viscous fluid toward 
a planar rigid or free surface. 

2. THEORETICAL DEVELOPMENT 

Figure l(a) shows two spherical drops of radii a~ and a2 and viscosities 2j/~ and 22#, respectively, 
approaching each other along their line-of-centers with relative velocity W = V~- V 2 (negative 
values of W describe drops that are receding from one another). In the limit as the radius of one 
drop goes to infinity, the problem becomes that of a drop approaching a planar interface. The drops 
are immersed in an immiscible fluid of viscosity #, and the distance between the drops is assumed 
to be small relative to either drop radius. Our objective is to predict the lubrication force which 
resists the motion of the approaching drops as a function of their radii, separation, relative velocity 
and relative viscosities. In order to accomplish this goal, the pressure profile in the gap between 
the drops must be found, and this requires that the tangential velocity and stress profiles at each 
interface be determined. The flow inside the drops is governed by the boundary integral form of 
the Stokes equations, while the motion of the fluid in the gap is described by lubrication theory. 

Lubrication f low in the gap 

As in the case of two rigid spheres in near-contact motion, the dynamic pressure gradient, Op/&, 
and radial velocity profile, u(r, z) ,  for the fluid in the gap are related by the fully-developed form 
of the radial momentum equation: 

0p 02u 

Or -- # OZ 2' [1] 

where r and z represent the radial and axial coordinates, respectively. Equation [1] is valid in the 
gap region provided that ho/a <~ 1 and Re ho/a ~. l, where the Reynolds number is defined as 
Re -= p W a / # ,  and p is the gap fluid density. Since the fluid pressure is constant across the gap, [l] 
may be integrated directly, subject to the interfacial boundary conditions on the surface of drop 
l, u(r, z0 = ul(r), and on the surface of drop 2, u(r, r : ) =  u2(r), where ul(r) and u2(r) are the 
unknown velocities of the drop interfaces. This yields 

, 1 0p u I u 2 
u(r, z)  = ~ ~r (z - z2) (z - z,) - -~ (z - z2) + ~ (z - z,). [2] 

The spherical drop surfaces may be approximated by paraboloids in the region of ncar-contact, 
so that the gap-thickness profile is given by 

r 2 
h(r)  = z2 - zl = ho + ~a" [3] 

Figure l(b) illustrates that the velocity profile is, in general, asymmetric across the gap; 

(o) 

z2= ho+r2/2o2, 
(b) z. \ 

- V ~  u(r, 
z) 

Figure I. Schematic of two spherical drops moving toward one another along their line-of-centers: 
(a) side view; (b) close-up of near-contact region. 
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consequently, the tangential stresses on the two drop interfaces are predicted to differ when the 
drops have different viscosities. 

By differentiating [2], the corresponding tangential stress on each drop interface in the 
near-contact region, ft(r) and f~(r), can be determined as a function of the pressure gradient and 
the two interfacial velocities: 

du} hdp # (u2-ut) 
f l ( r )  = # ~z :=.  = 2 dr + [4] 

and 

c3u h c3p # 
A ( r )  = - '  = Tr (u2 -  u,). [s] 

z = :  2 

A macroscopic mass balance performed on the fluid being squeezed out of the gap relates the 
pressure gradient in [4] and [5] to the unknown interfacial velocities, ul(r ) and u2(r): 

nr2W=2rcr i u(r,z)dz=rcrh u2+um ~ / .  [6] 

Substituting [6] into [4] and [5] gives the relationship for the tangential stress on each drop interface 
as a function of the two unknown interracial velocities: 

f ~ ( r ) = h ( ~ - - 2 u 2 - 4 u ~  ) [7] 

and 

Note that in the limit that the drop interfaces become immobile, u~=u2=0,  and so 
f~ =f2 = 3#rW/h 2, which is the well-known result from lubrication theory for the stress on two 
colliding solid spheres, first described by Reynolds (1886). In general, however, [7] and [81 contain 
four unknowns: f~, f~, u~ and u2 which must be determined in order to compute the hydrodynamic 
lubrication force on each drop. Consequently, in order to solve for these interfacial velocities and 
stresses, two more equations are necessary. These may be obtained by considering the flow inside 
each drop, as described in the next subsection. 

The flow inside the drops 
Since we restrict our attention to low Reynolds number flow inside each drop, we may make 

use of the boundary integral form of the Stokes equations (see Rallison & Acrivos 1978). This 
approach is especially convenient for the current application because it provides a direct relation- 
ship between the interracial velocity and tangential stress for each drop interface. Following the 
development of Davis et al. (1989), the drop interfaces are treated as nearly flat in the vicinity of 
near-contact, and we restrict our attention to point stresses or Stokeslets acting on the interfaces. 
The proper forms of the boundary integral equations, which under these conditions relate the 
interfacial velocity for axisymmetric flow in a half-space to the interfacial stress distribution, 
become 

u,(r) = ~ d~ (r', r)fl(r')dr" [9] 

and 

where 

u2(r) = ~2# dp(r', r)f2(r') dr', [1o] 

1 r' f~ cos 0 dO 
dp(r', r) = 2n (r 2 + r'2) 1/2 (1 -k '~c~sb)  '/2 [ l i ]  
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is an elliptic-type Green's function kernel and k2=2rr'/(r2+r'2).  Note that ¢(r ' , r )  has a 
logarithmic singularity at r ' =  r of the form , 

¢(r ' ,  r),-, -2-~n In asr ' -*r .  [12] 

Equations [9] and [10] may be substituted into [7] and [8] to eliminate the interfacial velocities, with 
the result being two coupled Fredholm integral equations of the second kind which must be 
inverted for the two unknown interfacial stresses: 

and 

2;0. 4f: 1 A(r) = ~ - - 22# ¢(r ' ,  r)f2(r') dr' - ~ ¢(r ' ,  r)fl(r ')  dr' [13] 

/~I3hW 4 f f  2 f0°° 1 f2(r) = ~ 22/~ ¢(r ' ,  r)f2(r') dr' - ~ ¢(r ' ,  r)fl(r ')  dr" . [14] 

Once [13] and [14] are solved for f, and fi ,  the pressure gradient may be determined from 

~p A + A  
cgr h [15] 

which was obtained simply by adding [4] and [5], and which satisfies a force balance on a differential 
element of the fluid in the gap. Finally, the total lubrication force, which is equal in magnitude 
but opposite in sign on each drop, is the well-known integral of the pressure over the surface area 
of the near-contact region of each drop. The force may be expressed explicitly in terms of the 
tangential interracial stresses using integration by parts: 

F = 2re p(r)r dr = rc (fi +f2)r2 dr. [161 
h 

Strictly speaking, the upper limit of the integral in [16] should be in the range ~ ~ r ~ a, based 
on our previous assumptions of the narrowness of the lubrication region, but since p--*0 
for r ~> ~ ,  it is valid to replace this limit by r = oo. 

Scaling 

For the flow inside the narrow gap between the drops, the axial length scale is h0, the radial 
length scale is x/~0, the axial velocity scale is W and the radial velocity scale is W ax//-~0. 
Using these scales to nondimensionalize the governing equations, the lubrication force on the drops 
is found to depend on two dimensionless parameters: 

ml = ~ ' / I  ~/~00 [17] 

and 

m2=2~-1 /~ .  [18] 

The ratio mdm2 = 22/2~ represents the relative viscosity between the two drops and may be treated 
as the second parameter in place of [1 8]. From the condition of continuity of tangential stress across 
each drop interface, 

/~ = 2d~ [191 

and 

u,~,~z :; au , = 22~ c~z]:~ [201 

and from the fact that the appropriate length scale in both the radial and axial directions for flow 
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k2~ 

Figure 2. Sketches o f  the parabolic velocity profile in the gap between two spherical fluid drops  moving 
toward one another  with: (a) m 2 ~[ 1, m t =  O(1); (b) m 2 ,~ 1, m~ ¢ 1; (c) m 2 ,~ 1, m~ ~, 1; (d) m2 >> I, 
rn I = O(1); (e) m 2 ~, 1, rn t ,~ I; (f) m 2 ~, 1, rn I >> 1. Figure l(b) shows the general case of  m I = O(1), 

m 2 = O(1). 

inside the drops is V/~0, the parameters ml and m2 are found to be measures of the mobility of 
the interfaces of drops 1 and 2, respectively. In particular, ml and m2 give approximate measures 
of the ratios of the interfacial velocities for drops 1 and 2, respectively, to the average radial velocity 
in the gap between them. Depending on the values of ml and m2, the parabolic flow profile in the 
gap between the drops may have several different shapes, as sketched in figures 2(a-f). Note that 
in the limit for which the interface of drop 2 becomes immobile (m2 ~ 0  and 22/21 --+ ~) ,  the 
problem becomes that of drop 1 approaching a rigid sphere or plate [figures 2(a--c)]. Likewise, in 
the opposite limit for which the interface of drop 2 becomes fully mobile (m2 --+ ~ and 22/21 ~ 0), 
the problem becomes that of drop 1 approaching a bubble or a free surface [figures 2(d-f)]. Each 
of these limiting cases gives important results which are described in the next section. 

3. RESULTS AND DISCUSSION 

Drops o f  the same viscosity (21 = 2e = 2, ml = me = m)  

For arbitrary values of the relative viscosities of the two drops, [13] and [14] are coupled and 
must be inverted numerically. However, Davis et al. (1989) developed both numerical and 
approximate solutions of the lubrication force on approaching drops for the important case when 
the drop viscosities are equal. Substituting 21 =22= 2 into [13] and [14] gives two identical 
Fredholm integral equations of the second kind of the form 

# [ 3 h W  2/~6 [" d r ' ] ,  [21] f ( r )  = "J° ~ c~(r', r ) f ( r ' )  

where f ( r ) = f ~ ( r ) = f ~ ( r ) .  Davis et al. numerically inverted [21] for the interfacial stress and 
computed the lubrication force from [16] wheref~(r) +fz(r)  was replaced by 2f(r). In addition, they 
showed that the numerical solution for the hydrodynamic force can be conveniently expressed as 
a Pad+ approximant of the form 

F W 1 + 0.38 m 
F(m) = 6n/za=-L --" ~ 1 + 1.69 m + 0.43 m 2' 

[22] 

no 

where P(m) is the force acting on the drops made dimensionless with the lubrication force on 
two rigid spheres and m -~ 2 - l a v e 0 "  They also stated that [22] is an accurate approximation to 
the numerical result to within !-2% for all values of m. These results are used in the following 
subsections which describe the limiting cases of drops approaching rigid and free interfaces. 
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A drop or bubble near an immobile interface (2e ---, co, me ~ O) 

In the limit that drop 2 behaves like a rigid sphere or plate (22 = oo),  [13] a n d  [14] may be 
simplified to 

f J ( r ) = h [ 3 h W  2,#4 [" d r ' ]  [23] - " 1 °  ~ c~(r', r)fj(r') 

and 

# [ 3 h W  2 [" ~(r', dr']. [24] 
= h 21# ,~o ~ r)fl(r')  A(r) 

Equations [23] and [24] show that fj and f2 are no longer coupled, and [23] is a Fredholm integral 
equation of  the second kind which may be inverted numerically to obtain a solution for the 
interfacial stress on drop 1. Subsequently, once f~(r) is known, [24] may be integrated to obtain 
the stress on the rigid sphere or plate, f2(r), and the hydrodynamic force acting on the drop may 
then be computed from [16]. 

Since [23] differs from [21] only by a constant factor of  3/2 multiplying the integral term, the 
lubrication force, F(ml), on a drop of viscosity 2i approaching a rigid body, can be related to F, 
the hydrodynamic force on two drops of  the same viscosity, by simple algebraic manipulations of 
[23] and [24], with the result being 

F 3 - / 2 m , \  1 
6n# a2 __W= ~ F ~ - - f - )  + ~. [25] 

h0 
A key feature to note is that, when the drop is sufficiently close to the solid so that a v / ~  0 >> 21, 
the drop interface is fully-mobile (m~ ,~ 1) and the force on the drop to leading-order is one-fourth 
o f  that on a rigid sphere approaching a solid body--independent of the viscosity of  the drop. This 
is shown figure 3 where the lubrication force given by [25] is plotted vs the dimensionless gap 
between a spherical drop of  radius a and a solid plane boundary for various values of  the ratio 
of  drop viscosity to continuous-phase viscosity. For comparison, the exact results using bispherical 
coordinates are also shown; these were obtained by using the analysis of  Haber et al. (1973) and 
by keeping a large number of  terms when the gap size was made small. In the limit as ho/a ~ O, 
the force asymptotes to one-fourth of  that for a solid sphere (21 = ~ ) ,  regardless of  whether the 
drop is a bubble (21 = 0) or has a finite viscosity. This same conclusion was drawn by Beshkov 

% 
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Ji l l /  
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i0  -6  i0 -5  10 -4  I0 -3  I0 -8  I0 -I I 

ho/O I 

Figure 3. The dimensionless lubrication force as a function of the dimensionless separation for drop I 
approaching a rigid plate for several values of 2~. The solid lines are from Haber et al. (1973) using 

bispherical coordinates; the dashed lines are our new near-contact solution. 



THE LUBRICATION FORCE BETWEEN SPHERICAL DROPS 633 

et al. (1978) who examined the limiting form (ho/a ~0)  of the series solution developed by Haber 
et al. (1973). Finally, itis seen in figure 3 that highly viscous drops ()-i >3, 1) behave as rigid spheres 
for sufficiently large separations (ho/al >> )' 15) but that they behave as bubbles with freely mobile 
interfaces for very small separations (ho/ai < ).?2). 

Following Davis et al. (1989), regular asymptotic expansions may also be used to solve [23] and 
[24] and to illustrate the behavior of the lubrication force acting on a drop approaching a rigid 
body when the drop is much more viscous than the surrounding fluid. When the drop is very viscous 
()'l >> ax//-~0, mi '~ 1), the tangential velocity of the drop interface, Ul, is small, and both the drop 
and rigid interfaces strongly resist the flow of fluid from the gap, as shown in figure 2(b). Equations 
[23] and [24] may then be solved using asymptotic expansions in increasing powers of the mobility 
parameter, m l. When the resulting expressions for f~(r) and f2 (r) are substituted into [16], a series 
expansion for the lubrication force results: 

F 
- - = l - 0 . 6 5 m i + O . 5 9 m ~ - O . 5 5 m ~ + O . 5 1 m ~ - O . 4 8 m ~ + O ( m 6 ) .  [26] 
6n#a 2 __W 

h0 
Beshkov et al. (1978) give an approximate relationship identical to the first two terms of [26] except 
that the coefficient of -0.65 is replaced by - 1.96, a difference of a factor of 3. At present, we 
have not determined the source of this discrepancy. Nevertheless, in the limit that ml = 0, both 
solutions give the well-known result for two colliding solid spheres as first developed by Reynolds 
(1886). 

In the opposite limit when the viscosity of the drop is comparable to or smaller than that of 
the continuous phase ()'l '~ ax/C~0, ml >> 1), the drop interface represents little resistance to flow in 
the gap, and the majority of the resistance results from the presence of the opposing rigid interface, 
as shown in figure 2(c). Under these conditions, [23] yields a Fredholm integral equation of the 
first kind that can be inverted to solve for f](r). Davis et al. (1989) have numerically inverted an 
integral similar to this which differs only by a factor of 2/3. Using their result, the hydrodynamic 
force resisting the relative motion of the drop approaching a rigid body is given by 

F 1 0.657 
4 - - ,  [27] 

61t/~a 2 W 4 ml 
h0 

clearly indicating that, in the limit as ml ~ ~ ,  the hydrodynamic resistance which the drop 
experiences as it moves toward a rigid surface approaches one-fourth of that experienced by a rigid 
sphere under otherwise identical conditions. This result is independent of the drop viscosity, 
provided that the condition )'l '~ ax//~0 is met. An approximate solution given by Beshkov et al. 
(1978) is identical to [27] except that the coefficient 0.657 is replaced by 0.981, a difference of a 
factor of x/~. 

Finally, for a drop of arbitrary viscosity approaching a rigid body, the Pad6 approximant [22] 
may be substituted into [25] to obtain a new Pad6 approximant 

F 1 + 0.47 ml + 0.047 m~ 
[28] 

W 1 + 1.13m~ +O.19m~ ' 
6rc/aa 2 h--~ 

which approximates the full numerical solution (dashed lines in figure 3) to within 1-2% for all 
values of m~. 

A drop near a fully mobile interface (),: ~0 ,  m2-" ~ )  
In the limit that drop 2 behaves like a bubble or free planar surface ()'2 = 0), the tangential stress 

on the interface of drop 2 is negligible compared to that on the interface of drop 1. By utilizing 
the result that f2 ~ 0 in [7] and [8], it is easy to show that 

f ,(r) = 3--ff~ (~--~ - Ul). [29] 
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Figure 4. The dimensionless lubrication force as a function of the dimensionless separation for drop 1 
approaching a free surface for several values of 2,. The solid lines are from Haber et  al. (1973) using 

bispherical coordinates; the dashed lines are our new near-contact solution. 

Then, by substituting ut from [9] into [29], we obtain an integral equation solely in terms off,(r): 

f l(r ) = ¢ (r', r ) f  l(r') dr'  . [30] 

Equation [30] is a Fredholm integral equation of the second kind and must in general be inverted 
numerically to obtain a solution for the interfacial stress on drop 1. As in the limiting case for a 
drop approaching a rigid body, however, [30] can be related to the integral equation [21] which 
was previously solved by Davis et al. (1989), and the corresponding lubrication force acting on a 
drop approaching a free surface is given by 

F 1 ~(m,)  [31] 
w = ~  F y , 

6rct'ta2 h~ 

where F is the lubrication force resisting the approach of two drops of the same viscosity defined 
in [22]. Figure 4, a plot of the force made dimensionless with the Hadamard-Rybczynski formula 
for an isolated drop (see Batchelor 1967) as a function of the dimensionless separation, shows that 
these new lubrication results ( - - - )  are in good agreement with the bispherical coordinate solutions of 
Haber et al. (1973) ( ) when the gap is sufficiently small relative to the size of the drop. 

When the drop is very viscous (2, ~> ~ ,  m~ ,~ 1), the drop interface strongly resists the flow 
of fluid from the gap, as shown in figure 2(e). Again, using the asymptotic expressions of Davis 
et al. for the interfacial stress acting on two drops of the same viscosity, the hydrodynamic force 
may then be approximated by an asymptotic expansion in increasing powers of the mobility 
parameter, m~: 

F 1 
- - 0 . 1 6 4  m, + 0.111 m~-O.O77m~+O.O54m~-O.O38m~+O(m6) .  [32] 

W 4 
6n#a: ~00 

In the limit as m~ --, 0, which corresponds to a rigid or extremely viscous sphere approaching a 
bubble or free interface, [32] shows that the force again becomes equal to one-fourth of that for 
two rigid spheres with the same reduced radius and relative velocity. Brenner (1961) previously 
showed that predictions of the drag on a rigid sphere approaching a planar free surface could be 
obtained from the solution for two equal rigid spheres moving toward one another using symmetry. 
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His series solution using the method of bipolar coordinates diverges, however, when the gap 
distance gets much smaller than the size of the sphere. 

In the opposite limit, when the viscosity of the drop is comparable to or smaller than that of 
the continuous phase (2~ ,~ a~/~0, ml ~> 1), the drop interface represents little resistance to flow in 
the gap, as shown in figure 2(t"). To leading order, the velocity profile is flat and has a magnitude 
of u = rW/2h given by the mass balance [6]. The tangential stress and resulting hydrodynamic force 
resisting the relative motion of the drop under these conditions may be found from numerically 
inverting [30], which in this limit becomes a Fredholm integral equation of the first kind. Again, 
utilizing the solution developed by Davis et al. for the case of two drops of the same viscosity, 
this yields 

F 0.438 X ~  
- or F = 8.2621~taW . [33] 

6n/~a2 ___W ml 
h0 

A key result is that the lubrication force is proportional to the viscosity of the fluid inside the drop 
and is independent of the viscosity of the fluid in the gap. A similar result has been obtained by 
Beshkov et al. (1978) and by Ivanov & Trakov (1976) who argued that the dependency of the drag 
on the viscosity of the drop results from the fact that, in the near gap limit, most of the energy 
is being dissipated within the drop rather than within the gap. Moreover, the relative velocity under 
the action of a constant applied force decreases only in proportion to h ~/2, rather than in proportion 
to h0 as in the rigid sphere case, and so coalescence can occur in a finite time without the 
requirement of an attractive force that increases in magnitude as the gap decreases. Finally, the 
resistance on a single drop approaching a bubble or a free surface in this limit is one-half of the 
value obtained by Davis et al. for the corresponding problem of a drop approaching another drop 
or half-space composed of the same fluid. 

For a drop of arbitrary viscosity moving through an immiscible viscous fluid toward a bubble 
or a free surface [figure 2(d)], we can again make use of the Pad6 expression [22] to obtain an 
approximation to the full numerical 
approximant of the form 

F 
W 

6n#a2 ho 

solution. Substituting [22] into [31] yields a new Pad6 

~ 1 (  1+0.19m, ) 
- -  ~ , [ 3 4 ]  

~ 4  1 + 0.84ml + 0.11 rn I 

which approximates the full numerical solution (dashed lines in figure 4) to within 1-2% for all 
values of rn~. 

Drops of  arbitrary viscosity 

For arbitrary values of ml and m2, [13] and [14] must be solved numerically using an iterative 
method. The procedure used was to initially choosef2(r) = 3#rW/h 2, the tangential stress on a rigid 
sphere in close approach toward another rigid sphere, and then to compute f,(r) by numerically 
inverting [13]. Next, using the new f~(r), an improved f: (r) was computed by numerically inverting 
[14]. This simple, successive-substitution scheme converged rapidly for all values of m I and m2 and 
required no artificial weighting. 

The results of the numerical calculations are illustrated in figure 5, a plot of the dimensionless 
force on each sphere as 'a function of the mobility parameter m~ for various viscosity ratios, 
22/21 = ml/m 2. The limiting cases of 22/2i = ~ and 22/21 = 0, corresponding to the force on a drop 
approaching a rigid body and a free surface, respectively, have been described in the two previous 
subsections. In addition, as ml--* 0, drop 1 behaves like a rigid sphere or plate; whereas when 
m t ~ oo, drop 1 behaves like a bubble or free surface. For 22/;t , ---~, the dimensionless 
hydrodynamic force approaches a value of 1/4 as ml--*~; whereas for 22/21 = 0, this force 
approaches a value of 1/4 as m I ~0 .  The important case of 22/;tl = 1 corresponds to a drop 
approaching another drop or interface of the same fluid, the details of which have been discussed 
previously by Davis et al. (1989). 

Figure 6 illustrates a comparison of our near-contact solution to a previous solution by Haber 
et al. (1973) who used the method of bispherical coordinates. The conditions illustrated in the plot 
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Figure 5. The dimensionless lubrication force as a function of the mobility parameter of  drop 1 for several 

values of the viscosity ratio, 2 2 / 2  t. 

are for drops of  the same size, at = a2 = 2a, moving at equal and opposite velocities, V] = - V2. 
The hydrodynamic resistance force is made dimensionless using the Hadamard-Rybczynski 
formula for an isolated drop. For a very viscous drop approaching another viscous drop or solid 
body (2~ ,> 1, 22 ,> 1), an interesting feature of the curves shown in figure 6 is that the slope of  these 
log-log plots changes from - 1 to - i/2 as ho/a decreases. This represents the transition from the 
drops exhibiting rigid sphere behavior for moderate separations to their interfaces becoming mobile 
at very small separations. 

The new lubrication results agree with the exact results when ho/a is sufficiently small. For very 
viscous drops in near contact (2t, 22/> O(a/ho)J/2), this is expected to be the case when ho/a ,~ 1. For 
drops of moderate viscosity or when one of  the interfaces is fully mobile, one of two more stringent 
conditions, h x / ~  ,~2, or hx/-h~o/a '~;~2, is required. Finally, when both 2, ~< O(ho/a) t/2 and 
22 ~< O (ho/a) ~/2, such as may be the case for a gas bubble approaching another gas bubble or a free 
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Figure 6. The dimensionless force as a function of the dimensionless separation for a~ = a 2 = 2a and 
V~ = - V, . ,  for several values o f~  1 and 22 . The solid lines are from Haber et  al .  ( 1 9 7 3 )  using bispherical 

coordinates; the dashed lines are our new near-contact solution. 
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surface, the lubrication force does not dominate over the contribution to the force in the outer 
region, and the near-contact results described in this paper do not apply. 

4. CONCLUDING REMARKS 

This work presents quantitative predictions of the hydrodynamic lubrication force resisting the 
near-contact motion of two spherical drops of different viscosities moving along their line-of- 
centers toward one another through a third phase composed of a different fluid. Lubrication theory 
was used to model the flow of the fluid within the narrow gap between the drops, and the boundary 
integral formulation of the Stokes equations was used for the fluid flow within the drops. In the 
limit that the viscosity of one drop becomes large and its interface is immobile, the force on the 
drops is at least one-fourth of the lubrication force between two colliding rigid spheres and is 
proportional to the viscosity of the fluid in the gap. In addition, very viscous drops at moderate 
separations (2~,).2 ~> ax//~o) experience a force resisting their motion that is inversely proportional 
to the minimum distance between the drop surfaces. Hence, a constant applied force is insufficient 
to push the drop into contact with a solid boundary in a finite time, and an additional 
mechanism--such as the action of van der Waals attractive forces--is required. 

In contrast, significant tangential motion of the drop interfaces occurs due to the radial squeeze 
flow in the gap for drops with moderate relative viscosity at small separations. As the interface 
of one drop becomes fully mobile, the force is always less than one-fourth of that for two rigid 
spheres. Moreover, when the interface of one drop is fully mobile and the interface of the other 
drop is nearly so, the hydrodynamic resistance is proportional to the viscosity of the more viscous 
drop, and equals one-half the value acting on the drop moving toward an interface composed of 
the same fluid as the drop. Further, the force resisting the relative motion of the drops is inversely 
proportional to the square root of the minimum distance between the drop surfaces. This permits 
contact between two drops to occur in a finite time when they are subject to a constant force 
pushing them together, and thus has important implications in droplet coalescence. 

In the analysis, inertia effects have been neglected relative to viscous effects. For the flow in the 
narrow gap between the drops, inertia effects are negligible when Re (ho/a) ~ 1 for the nearly rigid 
and partially mobile cases, and when Re hx//~o/a/~. ~ 1 for the fully mobile cases, where 2 is the 
viscosity of the more viscous drop, Re = p Wa/g is the Reynolds number and p is the fluid density 
of the continuous phase. For the flow inside each drop, inertial effects are negligible when 
Re(pJp )  4 1, where Pd is the density of the fluid comprising the drop. 

In addition, it is assumed that the drops remain spherical. In order for any flattening of the drop 
interfaces to be small relative to the gap size, a normal stress balance on the interfaces requires 
that (a/ho) 2 Ca ~ 1 for the nearly rigid and partially mobile cases, and that 2(a/ho)3/2Ca ~ 1 for 
the fully mobile case, where 2 is the viscosity of the more viscous drop, Ca = p W/7 is the capillary 
number and 3, is the smaller of the two interfacial tensions. Each of these conditions is met when 
the drops are sufficiently small (a ~< 10/~m, typically). However, when larger drops become close 
together, it is expected that the pressure which builds up to squeeze the fluid out from between 
the drop surfaces will also cause deformation of the interfaces near the axis of symmetry. The 
combination of lubrication theory and boundary integral theory developed in this work will still 
apply when deformation is important, but the normal stress balance must also be used to infer the 
gap thickness profile, h(r, t). 
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